2,852 research outputs found

    Phase-inherent linear visco-elasticity model for infinitesimal deformations in the multiphase-field context

    Get PDF
    A linear visco-elasticity ansatz for the multiphase-field method is introduced in the form of a Maxwell-Wiechert model. The implementation follows the idea of solving the mechanical jump conditions in the diffuse interface regions, hence the continuous traction condition and Hadamard’s compatibility condition, respectively. This makes strains and stresses available in their phase-inherent form (e.g. εijα\varepsilon ^{\alpha }_{ij}, εijβ\varepsilon ^{\beta }_{ij}), which conveniently allows to model material behaviour for each phase separately on the basis of these quantities. In the case of the Maxwell-Wiechert model this means the introduction of phase-inherent viscous strains. After giving details about the implementation, the results of the model presented are compared to a conventional Voigt/Taylor approach for the linear visco-elasticity model and both are evaluated against analytical and sharp-interface solutions in different simulation setups

    The High-Mass End of the Red Sequence at z~0.55 from SDSS-III/BOSS: completeness, bimodality and luminosity function

    Get PDF
    We have developed an analytical method based on forward-modeling techniques to characterize the high-mass end of the red sequence (RS) galaxy population at redshift z0.55z\sim0.55, from the DR10 BOSS CMASS spectroscopic sample, which comprises 600,000\sim600,000 galaxies. The method, which follows an unbinned maximum likelihood approach, allows the deconvolution of the intrinsic CMASS colour-colour-magnitude distributions from photometric errors and selection effects. This procedure requires modeling the covariance matrix for the i-band magnitude, g-r colour and r-i colour using Stripe 82 multi-epoch data. Our results indicate that the error-deconvolved intrinsic RS distribution is consistent, within the photometric uncertainties, with a single point (<0.05 mag<0.05~{\rm{mag}}) in the colour-colour plane at fixed magnitude, for a narrow redshift slice. We have computed the high-mass end (0.55Mi22^{0.55}M_i \lesssim -22) of the 0.55i^{0.55}i-band RS Luminosity Function (RS LF) in several redshift slices within the redshift range 0.52<z<0.630.52<z<0.63. In this narrow redshift range, the evolution of the RS LF is consistent, within the uncertainties in the modeling, with a passively-evolving model with Φ=(7.248±0.204)×104\Phi_* = (7.248 \pm 0.204) \times10^{-4} Mpc3^{-3} mag1^{-1}, fading at a rate of 1.5±0.41.5\pm0.4 mag per unit redshift. We report RS completeness as a function of magnitude and redshift in the CMASS sample, which will facilitate a variety of galaxy-evolution and clustering studies using BOSS. Our forward-modeling method lays the foundations for future studies using other dark-energy surveys like eBOSS or DESI, which are affected by the same type of photometric blurring/selection effects.Comment: 27 pages, 20 figures, accepted for publication in MNRA

    Neonatal tolerance to Mls-1a determinants: deletion or anergy of Vβ6 + T lymphocytes depending upon MHC compatibility of neonatally injected cells

    Get PDF
    Recent investigations in mice revealed that natural immunologlcal tolerance to endogenous minor lymphocyte-stimulating locus 1a (MIs-1a antigen correlates primarily with deletion of Mls-1aspeciflc Vβ6+ T lymphocytes In the thymus. Similar mechanisms account for acquired tolerance in some Instancessince the neonatal injection of Mls-1 a-expressing MHC compatible cells in neonatal mice within the first 24 hof life causes clonal deletion of Vβ6+ T cells. Here we demonstrate that Vβ6+ T cells are not deleted In mice neonatally treated with Mls-1a spleen cells expressing allogenelc H-2 molecules. However, when such non-deleted Vβ6+ T cells were tested In vitro, no interleukin 2 (IL-2) secretion or proliferation was observed after Mls-1a stimulation. This non-responsive state could be overcome by addition of exogenous IL-2, consistent with the fact that Vβ6+ cells enlarged and expressed IL-2 receptors upon Mls-1a stimulation. Furthermore, the same neonatally treated mice showed In vitro functional unresponsiveness of cytotoxic T cells but not of IL-2-secreting cells specific for the tolerated allogeneic MHC antigens. Taken together, our data Indicate that neonatal tolerance to Mls-1a can be accomplished by either clonal deletion or clonal anergy, and that it does not necessarily correlate with tolerance to MHC determinant

    An Empirical Calibration of the Completeness of the SDSS Quasar Survey

    Get PDF
    Spectra of nearly 20000 point-like objects to a Galactic reddening corrected magnitude of i=19.1 have been obtained to test the completeness of the SDSS quasar survey. The spatially-unresolved objects were selected from all regions of color space, sparsely sampled from within a 278 sq. deg. area of sky covered by this study. Only ten quasars were identified that were not targeted as candidates by the SDSS quasar survey (including both color and radio source selection). The inferred density of unresolved quasars on the sky that are missed by the SDSS algorithm is 0.44 per sq. deg, compared to 8.28 per sq. deg. for the selected quasar density, giving a completeness of 94.9(+2.6,-3.8) to the limiting magnitude. Omitting radio selection reduces the color-only selection completeness by about 1%. Of the ten newly identified quasars, three have detected broad absorption line systems, six are significantly redder than other quasars at the same redshift, and four have redshifts between 2.7 and 3.0 (the redshift range where the SDSS colors of quasars intersect the stellar locus). The fraction of quasars missed due to image defects and blends is approximately 4%, but this number varies by a few percent with magnitude. Quasars with extended images comprise about 6% of the SDSS sample, and the completeness of the selection algorithm for extended quasars is approximately 81%, based on the SDSS galaxy survey. The combined end-to-end completeness for the SDSS quasar survey is approximately 89%. The total corrected density of quasars on the sky to i=19.1 is estimated to be 10.2 per sq. deg.Comment: 37 pages, 10 figures, accepted for publication in A

    Ambivalence and interpersonal liking: The expression of ambivalence as social validation of attitudinal conflict

    Get PDF
    Literature on attitude similarity suggests that sharing similar attitudes enhances interpersonal liking, but it remains unanswered whether this effect also holds for ambivalent attitudes. In the present research, we shed light on the role attitudinal ambivalence plays in interpersonal liking. Specifically, we examine whether people express ambivalence strategically to generate a positive or negative social image, and whether this is dependent on the attitudinal ambivalence of their perceiver. We test two alternative hypotheses. In line with the attitude-similarity effect, people should express ambivalence toward ambivalent others to enhance interpersonal liking, as sharing ambivalence might socially validate the latter’s experience of attitudinal conflict. On the other hand, people might express more univalence, as ambivalence may drive ambivalent others toward the resolution of their attitudinal conflict, and univalent stances could help to achieve that goal. In two studies (N = 449, 149), people expressed similar attitudes to those of their perceivers, even when the latter experienced attitudinal conflict (Studies 1 and 2). Moreover, they composed an essay, the message of which validated their perceiver’s attitudinal conflict (Study 2). In line with these results, we further observe that the more people experienced their ambivalence as conflicting, the more they liked others who similarly experienced attitudinal conflict (Study 1). These findings suggest that the expression of ambivalence can have important interpersonal functions, as it might lead to an enhanced social image when interacting with those coping with attitudinal conflict

    Large-Scale Anisotropic Correlation Function of SDSS Luminous Red Galaxies

    Full text link
    We study the large-scale anisotropic two-point correlation function using 46,760 luminous red galaxies at redshifts 0.16 -- 0.47 from the Sloan Digital Sky Survey. We measure the correlation function as a function of separations parallel and perpendicular to the line-of-sight in order to take account of anisotropy of the large-scale structure in redshift space. We find a slight signal of baryonic features in the anisotropic correlation function, i.e., a ``baryon ridge'' which corresponds to a baryon acoustic peak in the spherically averaged correlation function which has already been reported using the same sample. The baryon ridge has primarily a spherical structure with a known radius in comoving coordinates. It enables us to divide the redshift distortion effects into dynamical and geometrical components and provides further constraints on cosmological parameters, including the dark energy equation-of-state. With an assumption of a flat Λ\Lambda cosmology, we find the best-fit values of Ωm=0.2180.037+0.047\Omega_{\rm m} = 0.218^{+0.047}_{-0.037} and Ωb=0.0470.016+0.016\Omega_{\rm b} = 0.047^{+0.016}_{-0.016} (68% C.L.) when we use the overall shape of the anisotropic correlation function of 40 including a scale of baryon acoustic oscillations. When an additional assumption Ωbh2=0.024\Omega_{\rm b}h^2=0.024 is adopted, we obtain ΩDE=0.7700.040+0.051\Omega_{\rm DE}=0.770^{+0.051}_{-0.040} and w=0.930.35+0.45w=-0.93^{+0.45}_{-0.35}. These constraints are estimated only from our data of the anisotropic correlation function, and they agree quite well with values both from the cosmic microwave background (CMB) anisotropies and from other complementary statistics using the LRG sample. With the CMB prior from the 3 year WMAP results, we give stronger constraints on those parameters.Comment: 11 pages, 9 figures, 1 table, typo corrected, references added with respect to published versio
    corecore